· 用户注册 · 设为首页 · 加入收藏 · 联系站长 · · ·
 | 网站首页 | 文章中心 | 图片中心 | 影音在线 | 下载中心 | 许愿祝福 | 我要投稿 | 
您现在的位置: 生物小吧 >> 文章中心 >> 高校教程 >> 植物生理学 >> 正文 今天是:
第二节 细胞壁的结构与功能
作者:植物生理…    文章来源:扬州大学农学院    点击数:4951    更新时间:2007/7/4
        ★★★ 【字体:
  细胞壁(cell wall)是植物细胞外围的一层壁,具一定弹性和硬度,界定细胞形状和大小。

一、细胞壁的组成
  (一)细胞壁的结构
  典型的细胞壁是由胞间层(intercellular layer)、初生壁(primary wall)以及次生壁(secondary wall)组成(图1-4)。

  图 1-4 细胞壁的亚显微结构图解
  S1 次生壁外层; S2 次生壁中层; S3 次生壁内层; CW1 初生壁; ML 胞间层

  1胞在分裂时,最初形成的一层是由果胶质组成的细胞板(cell plate),它把两个子细胞分开,这层就是胞间层,又称中层(middle lamella)。随着子细胞的生长,原生质向外分泌纤维素,纤维素定向地交织成网状,而后分泌的半纤维素、果胶质以及结构蛋白填充在网眼之间,形成质地柔软的初生壁。很多细胞只有初生壁,如分生组织细胞、胚乳细胞等。但是,某些特化的细胞,例如纤维细胞、管胞、导管等在生长接近定型时,在初生壁内侧沉积纤维素、木质素等次生壁物质,且层与层之间经纬交错。由于次生壁质地的厚薄与形状的差别,分化出不同的细胞,如薄壁细胞、厚壁细胞、石细胞等.
  (二)细胞壁的化学组成
  构成细胞壁的成分中,90%左右是多糖,10%左右是蛋白质、酶类以及脂肪酸等(表1-3)。细胞壁中的多糖主要是纤维素、半纤维素和果胶类,它们是由葡萄糖、阿拉伯糖、半乳糖醛酸等聚合而成。次生细胞壁中还有大量木质素。

  1.纤维素 纤维素(cellulose)是植物细胞壁的主要成分,它是由1 000~10 000个β-D-葡萄糖残基以β-1,4-糖苷键相连的无分支的长链。分子量在50 000~400 000之间。纤维素内葡萄糖残基间形成大量氢键,而相邻分子间氢键使带状分子彼此平行地连在一起,这些纤维素分子链都具有相同的极性,排列成立体晶格状,可称为分子团,又叫微团(micellae)。微团组合成微纤丝(microfibril),微纤丝又组成大纤丝(macrofibril),因而纤维素的这种结构非常牢固,使细胞壁具有高强度和抗化学降解的能力(图1-4)。

   存在于细胞壁中的纤维素是自然界中最丰富的多糖。据推算,每年地球上由绿色植物光合作用生产的纤维素可达1011t之多,而1990年全球粮食产量只有2.2×109 t。如何把纤维素转化成为人类可利用的食物或者有效能源,是人们长期渴望解决的重大课题。
  2.半纤维素 半纤维素(hemicellulose)往往是指除纤维素和果胶物质以外的,溶于碱的细胞壁多糖类的总称。半纤维素的结构比较复杂,它在化学结构上与纤维素没有关系。不同来源的半纤维素,它们的成分也各不相同。有的由一种单糖缩合而成,如聚甘露糖和聚半乳糖。有的由几种单糖缩合而成,如木聚糖、阿拉伯糖、半乳聚糖等。
  半纤维素在纤维素微纤丝的表面,它们之间虽彼此紧密连接,但并非以共价键的形式连接在一起。因此,它们覆盖在微纤丝之外并通过氢键将微纤丝交联成复杂的网格,形成细胞壁内高层次上的结构。
  3.果胶类 果胶物质(pectic substances)也是细胞壁的组成成分。胞间层基本上是由果胶物质组成的,果胶使相邻的细胞粘合在一起。
  果胶物质是由半乳糖醛酸组成的多聚体。根据其结合情况及理化性质,可分为三类:即果胶酸、果胶和原果胶。
  (1)果胶酸 果胶酸(pectic acid)是由约100个半乳糖醛酸通过α-1,4-键连接而成的直链。果胶酸是水溶性的,很容易与钙起作用生成果胶酸钙的凝胶。它主要存在于中层中。
  (2)果胶 果胶(pectin)是半乳糖醛酸酯及少量半乳糖醛酸通过α-1,4-糖苷键连接而成的长链高分子化合物,分子量在25 000~50 000之间,每条链含200个以上的半乳糖醛酸残基。果胶能溶于水,存在于中层和初生壁中,甚至存在于细胞质或液泡中。
  (3)原果胶 原果胶(protopectin)的分子量比果胶酸和果胶高,甲酯化程度介于二者之间,主要存在于初生壁中,不溶于水,在稀酸和原果胶酶的作用下转变为可溶性的果胶。果胶物质分子间由于形成钙桥而交联成网状结构。它们作为细胞间的中层起粘合作用,可允许水分子自由通过。果胶物质所形成的凝胶具有粘性和弹性。钙桥增加,细胞壁衬质的流动性就降低;酯化程度增加,相应形成钙桥的机会就减少,细胞壁的弹性就增加。
  4.木质素 木质素(lignin)不是多糖,是由苯基丙烷衍生物的单体所构成的聚合物,在木本植物成熟的木质部中,其含量达18%~38%,主要分布于纤维、导管和管胞中。木质素可以增加细胞壁的抗压强度,正是细胞壁木质化的导管和管胞构成了木本植物坚硬的茎干,并作为水和无机盐运输的输导组织。
  5.蛋白质与酶 细胞壁中最早被发现的蛋白质是伸展蛋白(extensin),它是一类富含羟脯氨酸的糖蛋白(hydroxyprolinerich glycoprotein,HRGP),大约由300个氨基酸残基组成,这类蛋白质中羟脯氨酸(Hyp)含量特别高,一般为蛋白质的30%~40%。其它含量较高的氨基酸是丝氨酸(Ser)、缬氨酸、苏氨酸、组氨酸和酪氨酸等。伸展蛋白中的氨基酸顺序有特征性的结构单位为:
  Ser-Hyp-Hyp-(x)-Hyp-Hyp
  其中x为0或数个其他氨基酸。
  伸展蛋白中的糖组分主要是阿拉伯糖和半乳糖,含量为糖蛋白的26%~65%,连接到氨基酸上的糖在维持伸展蛋白构象中起了重要作用。伸展蛋白是植物(尤其是双子叶植物)初生壁中广泛存在的结构成分,同时它还参与植物细胞防御和抗病抗逆等生理活动。
  在玉米等禾本科植物的细胞壁中,还发现富含苏氨酸和羟脯氨酸的糖蛋白(threonine and hydroxyprolinerich glycoprotein,THRGP)和富含组氨酸和羟脯氨酸的糖蛋白(histidine and hydroxyprolinerich glycoprotein,HHRGP)。这两种糖蛋白除分别含苏氨酸和组氨酸外,其余的氨基酸和糖的组成及含量都与伸展蛋白类似。
  细胞壁的蛋白质还有其它种类,如富含甘氨酸的蛋白质(glycinerich protein,GRP),这类细胞壁蛋白质的特点是甘氨酸含量丰富,如大豆种皮、燕麦胚芽鞘、莱因衣藻等细胞壁中均含有较多甘氨酸。GRP的结构特征与动物的结构蛋白——胶原以及家蚕的茧丝蛋白类似。
  植物细胞壁中还发现存在阿拉伯半乳聚糖蛋白(arabinogalactan protein,AGP),AGP中的糖类主要是阿拉伯糖和半乳糖。此外,细胞壁中还发现有不到50个氨基酸残基的低分子量的富硫蛋白(thionin)以及凝集素(lectin)的存在。
  迄今已在细胞壁中发现数十种酶,大部分是水解酶类,其余则多属于氧化还原酶类。比如果胶甲酯酶、酸性磷酸酯酶、过氧化物酶、多聚半乳糖醛酸酶等。
  6.矿质 细胞壁的矿质元素中最重要的是钙。据研究,壁中Ca2+浓度远远大于胞内,估计为10-5~10-4mol·L-1,所以细胞壁为植物细胞最大的钙库。钙调素(calmodulin,CaM)在细胞壁中也被发现,如在小麦细胞壁中已检测出水溶性及盐溶性两种钙调素。
  (三)细胞壁的形成
  细胞壁的形成是多种细胞器配合作用的结果。新细胞壁的形成开始于细胞分裂的晚后期或早期。细胞分裂时,在两组染色体之间,也就是在母细胞的赤道板面上,有许多大小不一的分泌囊泡(secretory vesicles)不规则地汇聚在一块,这些小囊泡是由高尔基体和内质网分泌而形成的,其中富含组成细胞壁的各种糖类,它们借助与细胞赤道板垂直方向上存在的微管的运动,逐渐整齐地排列成片,组成成膜体(phragmoplast)。成膜体中的囊泡膜相互融合与连接形成细胞的质膜,其中的内含物连成一体构成细胞板,这是雏形的中层结构。细胞板组成后,高尔基体小泡运输造壁物质释放到质膜外,以充实新形成的壁。当细胞板中逐渐有果胶质和少量纤维素分子不断地填充和掺入时便构成了中层,在中层两侧陆续有纤维素和半纤维素等物质的沉积则形成了质地柔软的初生壁,这时两个子细胞便形成。此后,大多数细胞的初生壁内侧又分层、定向地沉积着纤维素分子,它们经纬分明地交叉加固,这是增强植物体支持能力的重要基础。纤维素分子的定向分层沉积与微管的活动有关(见第八章第二节与图8-5、6),秋水仙素(colchicine)可阻止微管的形成,抑制纤维素分子的定向排列。微管的另一个重要作用是使新形成的细胞板上保留某些通道,即参与胞间连丝的形成,使原生质在两个子细胞间能保持联系。

  可见,细胞壁的形成是在生活细胞分裂、成长以至分化的过程中逐步完成的。在细胞分裂以及新细胞壁形成时,除了有高尔基体、内质网和微管参与外,还有生长素和多种酶类的作用,而所有的活动又要靠线粒体来提供能量,这正体现了细胞内各部位相互配合来共同完成生命活动的特征。
  (四)细胞壁的功能
  对于细胞壁的功能,目前较肯定的有以下几个方面:
  1.维持细胞形状,控制细胞生长 细胞壁增加了细胞的机械强度,并承受着内部原生质体由于液泡吸水而产生的膨压,从而使细胞具有一定的形状,这不仅有保护原生质体的作用,而且维持了器官与植株的固有形态。另外,细胞壁控制着细胞的生长,因为细胞要扩大和伸长的前提是要使细胞壁松驰和不可逆伸展。
  2.物质运输与信息传递 细胞壁允许离子、多糖等小分子和低分子量的蛋白质通过,而将大分子或微生物等阻于其外。因此,细胞壁参与了物质运输、降低蒸腾作用、防止水分损失(次生壁、表面的蜡质等)、植物水势调节等一系列生理活动。细胞壁上纹孔或胞间连丝的大小受细胞生理年龄和代谢活动强弱的影响,故细胞壁对细胞间物质的运输具有调节作用。另外,细胞壁也是化学信号(激素、生长调节剂等)、物理信号(电波、压力等)传递的介质与通路。
  3.防御与抗性 细胞壁中一些寡糖片段能诱导植保素(phytoalexin)的形成,它们还对其它生理过程有调节作用,这种具有调节活性的寡糖片断称为寡糖素(oligosaccharin)。
  将一种庚葡萄糖苷寡糖素(图1-5)施加于大豆细胞时,会使负责合成抑制霉菌生长的抗菌素的基因活化而产生抗菌素。多种寡糖素的功能复杂多样,如有的作为蛋白酶抑制剂诱导因子,在植物抵抗病虫害中起作用;有的寡糖素可使植物产生过敏性死亡,使得病原物不能进一步扩散;还有的寡糖素参与调控植物的形态建成。

  图 1-5 第一个鉴定出的寡糖素——庚葡萄糖苷
  这是由7个葡萄糖单元组成的链,用黑色表示,它与许多无活性的细胞壁庚葡萄糖苷不同之处仅在于2个侧链(各为单个葡糖单元)与骨架连接的位置,骨架是以β糖苷键连接的5个葡萄糖单元的链。
  (Albersheim P.et al,1985)
   细胞壁中的伸展蛋白除了作为结构成分外,还有防病抗逆的功能。如黄瓜抗性品种感染一种霉菌后,其细胞壁中羟脯氨酸的含量比敏感品种增加得快。
  4.其他功能 细胞壁中的酶类广泛参与细胞壁高分子的合成、转移、水解、细胞外物质输送到细胞内以及防御作用等。
  研究发现,细胞壁还参与了植物与根瘤菌共生固氮的相互识别作用,此外,细胞壁中的多聚半乳糖醛酸酶和凝集素还可能参与了砧木和接穗嫁接过程中的识别反应。
  应当指出的是,并非所有细胞的细胞壁都具有上述功能,每一类细胞的细胞壁功能都是由其特定的组成和结构决定的。

二、胞间连丝
  (一)胞间连丝的结构
  当细胞板尚未完全形成时,内质网的片段或分支,以及部分的原生质丝(约400nm)留在未完全合并的成膜体中的小囊泡之间,以后便成为两个子细胞的管状联络孔道,这种穿越细胞壁、连接相邻细胞原生质(体)的管状通道被称为胞间连丝(plasmodesma)(图1-6)。由于胞间连丝使组织的原生质体具有连续性,因而将由胞间连丝把原生质体连成一体的体系称为共质体(symplast),而将细胞壁、质膜与细胞壁间的间隙以及细胞间隙等空间叫作质外体(apoplast)。共质体与质外体都是植物体内物质运输和信息传递的通路。

  图 1-6 胞间连丝的超微结构
  A.两个相邻细胞的胞壁电子显微图,显示胞间连丝 B.具有两种不同形状胞间连丝的细胞壁示意图

  胞间连丝的数量和分布与细胞的类型,所处的相对位置和细胞的生理功能密切相关。一般每μm2面积的细胞壁上有1~15条胞间连丝,而筛管分子和某些传递细胞(transfer cell)之间,胞间连丝特别多。
  (二)胞间连丝的功能
  1.物质交换 相邻细胞的原生质可通过胞间连丝进行交换,使可溶性物质(如电解质和小分子有机物)、生物大分子物质(如蛋白质、核酸、蛋白核酸复合物)甚至细胞核发生胞间运输。
  2.信号传递 通过胞间连丝可进行体内信息传递,物理信号、化学信号则可通过共质体传递。
  在19世纪汤森(Townsend)将南瓜毛细胞置于高浓度的蔗糖溶液中使之发生质壁分离(plasmolysis),原生质体由于急剧脱水收缩而被分离成两团原生质。在2~3d后,具有细胞核一团的原生质外围形成了新细胞壁,无细胞核的另一团则无壁产生。进一步观察发现,如果无核的原生质团通过胞间连丝与邻近细胞中具有核的原生质团相连,也能形成壁,这说明胞间连丝有传递由核发出的成壁信号的作用,它对细胞的分化有很大作用。

文章录入:admin    责任编辑:admin 
  • 上一篇文章:

  • 下一篇文章:
  • 发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
    网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)
    生物小吧