· 用户注册 · 设为首页 · 加入收藏 · 联系站长 · · ·
 | 网站首页 | 文章中心 | 图片中心 | 影音在线 | 下载中心 | 许愿祝福 | 我要投稿 | 
您现在的位置: 生物小吧 >> 文章中心 >> 高校教程 >> 植物生理学 >> 正文 今天是:
第五节 脱落酸
作者:植物生理…    文章来源:扬州大学农学院    点击数:1703    更新时间:2007/7/4
        ★★★ 【字体:
一、脱落酸的发现和性质
  (一)脱落酸的发现
  脱落酸(abscisic acid,ABA)是指能引起芽休眠、叶子脱落和抑制生长等生理作用的植物激素。它是人们在研究植物体内与休眠、脱落和种子萌发等生理过程有关的生长抑制物质时发现的。
  1961年刘(W.C.liu)等在研究棉花幼铃的脱落时,从成熟的干棉壳中分离纯化出了促进脱落的物质,并命名这种物质为脱落素(后来阿迪柯特将其称为脱落素Ⅰ)。1963年大熊和彦和阿迪柯特(K.Ohkuma and F.T.Addicott)等从225kg 4~7d龄的鲜棉铃中分离纯化出了9mg具有高度活性的促进脱落的物质,命名为脱落素Ⅱ(abscisinⅡ)。
  在阿迪柯特领导的小组研究棉铃脱落的同时,英国的韦尔林和康福思(P.F.Wareing and J.W.Cornforth)领导的小组正在进行着木本植物休眠的研究。几乎就在脱落素Ⅱ发现的同时,伊格尔斯(C.F.Eagles)和韦尔林从桦树叶中提取出了一种能抑制生长并诱导旺盛生长的枝条进入休眠的物质,他们将其命名为休眠素(dormin)。1965年康福思等从28kg秋天的干槭树叶中得到了260μg的休眠素纯结晶,通过与脱落素Ⅱ的分子量、红外光谱和熔点等的比较鉴定,确定休眠素和脱落素Ⅱ是同一物质。1967年在渥太华召开的第六届国际植物生长物质会议上,这种生长调节物质正式被定名为脱落酸。
  (二)ABA的结构特点
  ABA是以异戊二烯为基本单位的倍半萜羧酸(图7-19),化学名称为5-(1′-羟基-2′,6′,6′-三甲基-4′-氧代-2′-环己烯-1′-基)-3-甲基-2-顺-4-反-戊二烯酸〔5-(1′-hydroxy-2′,6′,6′-trimethyl-4′-oxo-2′-cyclohexen-1′-yl)-3-methyl-2-cis-4-trans-pentadienoic acid〕,分子式为C15H20O4,分子量为264.3。ABA环1′位上为不对称碳原子,故有两种旋光异构体。植物体内的天然形式主要为右旋ABA即(+)-ABA,又写作(S)-ABA。

  图 7-19 脱落酸的化学结构
  (三)ABA的分布与运输
  脱落酸存在于全部维管植物中,包括被子植物、裸子植物和蕨类植物。苔类和藻类植物中含有一种化学性质与脱落酸相近的生长抑制剂,称为半月苔酸(lunlaric acid),此外,在某些苔藓和藻类中也发现存在有ABA。
  高等植物各器官和组织中都有脱落酸,其中以将要脱落或进入休眠的器官和组织中较多,在逆境条件下ABA含量会迅速增多。水生植物的ABA含量很低,一般为3~5μg·kg-1;陆生植物含量高些,温带谷类作物通常含50~500μg·kg-1,鳄梨的中果皮与团花种子含量高达10mg·kg-1与11.7mg·kg-1
  脱落酸运输不具有极性。在菜豆叶柄切段中,14C-脱落酸向基运输的速度是向顶运输速度的2倍~3倍。脱落酸主要以游离型的形式运输,也有部分以脱落酸糖苷的形式运输。脱落酸在植物体的运输速度很快,在茎或叶柄中的运输速率大约是20mm·h-1

二、脱落酸的代谢
  脱落酸的合成部位主要是根冠和萎蔫的叶片,在茎、种子、花和果等器官中也能合成脱落酸。例如,在菠菜叶肉细胞的细胞质中能合成脱落酸,然后将其运送到细胞各处。脱落酸是弱酸,而叶绿体的基质呈高pH,所以脱落酸以离子化状态积累在叶绿体中。
  (一)ABA的生物合成
  脱落酸生物合成的途径主要有两条:
  1.类萜途径(terpenoid pathway) 脱落酸的合成是由甲瓦龙酸(MVA)经过法呢基焦磷酸(farnesylpyrophosphate,FPP),再经过一些未明的过程而形成脱落酸。此途径亦称为ABA合成的直接途径。
  MVA→→FPP→→ABA
  2.类胡萝卜素途径(carotenoid pathway) 脱落酸的碳骨架与一些类胡萝卜素的末端部分相似。塔勒(Tarlor)等将类胡萝卜素暴露在光下,会产生生长抑制物。后来发现紫黄质(violaxanthin)在光下产生的抑制剂是2顺式黄质醛(xanthoxin),在一些植物的枝叶中也检出这种物质。黄质醛迅速代谢成为脱落酸。近几年发现,除了紫黄质外,其他类胡萝卜素(如新黄质neoxanthix,叶黄素lutein等)都可光解或在脂氧合酶(lipoxygenase)作用下,转变为黄质醛,最终形成脱落酸(图7-20)。由类胡萝卜素氧化分解生成ABA的途径亦称为ABA合成的间接途径。通常认为在高等植物中,主要以间接途径合成ABA。


  图7-20 高等植物中生物合成脱落酸的可能途径
  直接途径是指从C15化合物(FPP)直接合成ABA的过程。间接途径则是指从C40化合物经氧化分解生成ABA 的过程。
  (二)ABA的钝化
  ABA可与细胞内的单糖或氨基酸以共价键结合而失去活性。而结合态的ABA又可水解重新释放出ABA,因而结合态ABA是ABA的贮藏形式。但干旱所造成的ABA迅速增加并不是来自于结合态ABA的水解,而是重新合成的。
  (三)ABA的氧化
  ABA的氧化产物是红花菜豆酸(phaseic acid)和二氢红花菜豆酸(dihydrophaseic acid)。红花菜豆酸的活性极低,而二氢红花菜豆酸无生理活性。

三、脱落酸的生理效应
  (一)促进休眠
  外用ABA时,可使旺盛生长的枝条停止生长而进入休眠,这是它最初也被称为“休眠素”的原因。在秋天的短日条件下,叶中甲瓦龙酸合成GA的量减少,而合成的ABA量不断增加,使芽进入休眠状态以便越冬。种子休眠与种子中存在脱落酸有关,如桃、蔷薇的休眠种子的外种皮中存在脱落酸,所以只有通过层积处理,脱落酸水平降低后,种子才能正常发芽。
  (二)促进气孔关闭
  ABA可引起气孔关闭,降低蒸腾,这是ABA最重要的生理效应之一。科尼什(K.Cornish,1986)发现水分胁迫下叶片保卫细胞中的ABA含量是正常水分条件下含量的18倍。ABA促使气孔关闭的原因是它使保卫细胞中的K+外渗,造成保卫细胞的水势高于周围细胞的水势而使保卫细胞失水所引起的。ABA还能促进根系的吸水与溢泌速率,增加其向地上部的供水量,因此ABA是植物体内调节蒸腾的激素。

  图 ABA促进气孔的关闭
  A.培养在缓冲液中的蚕豆表皮   B.缓冲液中加入ABA后几分钟内气孔就关闭
  (三)抑制生长
  ABA能抑制整株植物或离体器官的生长,也能抑制种子的萌发。ABA的抑制效应比植物体内的另一类天然抑制剂——酚要高千倍。酚类物质是通过毒害发挥其抑制效应的,是不可逆的,而ABA的抑制效应则是可逆的,一旦去除ABA,枝条的生长或种子的萌发又会立即开始。
  (四)促进脱落
  ABA是在研究棉花幼铃脱落时发现的。ABA促进器官脱落主要是促进了离层的形成。将ABA溶液涂抹于去除叶片的棉花外植体叶柄切口上,几天后叶柄就开始脱落(图7-21),此效应十分明显,已被用于脱落酸的生物检定。

  图7-21促进落叶物质的检定法
  (五)增加抗逆性
  一般来说,干旱、寒冷、高温、盐渍和水涝等逆境都能使植物体内ABA迅速增加,同时抗逆性增强。如ABA可显著降低高温对叶绿体超微结构的破坏,增加叶绿体的热稳定性;ABA可诱导某些酶的重新合成而增加植物的抗冷性、抗涝性和抗盐性。因此,ABA被称为应激激素或胁迫激素(stress hormone)。
四、脱落酸的作用机理
  在植物体内,ABA不仅存在多种抑制效应,还有多种促进效应。在各种实验系统中,它的最适浓度可跨4个数量级(0.1~200μmol·L-1)。对于不同组织,它可以产生相反的效应。例如,它可促进保卫细胞的胞液Ca2+水平上升,却诱导糊粉层细胞的胞液Ca2+水平下降。通常把这些差异归因于各种组织与细胞的ABA受体的性质与数量的不同。ABA及其受体的复合物一方面可通过第二信使系统诱导某些基因的表达,另一方面也可直接改变膜系统的性状,干预某些离子的跨膜运动。
  (一)脱落酸结合蛋白
  ABA含有α与β不饱和酮结构,能接受光的剌激而成为高度活跃状态,容易与蛋白质中氨基酸的氢原子结合。霍恩伯格和韦尔勒(Hornberg and Weiler,1984)利用这种原理使蚕豆叶片气孔保卫细胞原生质体的结合蛋白质产生光亲和标记(photoaffinity lable)。2-顺式ABA的几何异构体2-反式ABA对气孔保卫细胞缺乏生物活性,结果显示保卫细胞原生质体与具有强生物活性的2-顺式ABA发生专一性结合,这种结合有高亲和性、饱和性及可逆性,解离常数为3×10-9~4×10-9mol·L-1。所得结果与促进气孔关闭的ABA有效浓度颇为接近。叶肉细胞的原生质体对ABA的亲和性仅为气孔保卫细胞原生质体的1/10,提示ABA结合蛋白在植物体内分布的专一性。据估计每一细胞原生质体含有19.5×105个ABA结合位置,它们存在于质膜的外表面。ABA衍生物取代在结合位置的ABA的效率与它们的生物活性呈正相关。ABA结合蛋白包含3个亚基,其分子量分别为19 300、20 200及24 300。在高pH环境下,ABA与20 200多肽结合;在低pH环境下,ABA与其他两种多肽结合。这种特性与ABA在碱性及酸性条件下都能引起气孔关闭的生理作用吻合,以上试验结果提示气孔保卫细胞内ABA结合蛋白质具有受体功能。
  (二)ABA与Ca2+·CaM系统的关系
  在研究ABA与Ca2+·CaM 系统的关系时,有两类实验材料被广泛使用,一类是ABA诱导胞液Ca2+水平升高的,如鸭跖草或蚕豆的表皮、保卫细胞原生质体和大麦居间分生组织的原生质体,另一类是ABA诱导胞液Ca2+水平下降的,如大麦糊粉层细胞的原生质体。
  在研究ABA促使鸭跖草气孔关闭的机制时发现,ABA促进鸭跖草气孔关闭有赖于可利用Ca2+的存在,在缺钙条下,ABA几乎不抑制气孔开放。在不缺钙条件下,ABA能诱导鸭跖草下表皮保卫细胞的胞液游离Ca2+水平迅速升高,而且这种升高现象比气孔关闭现象出现得早。当鸭跖草的下表皮受到10-6mol·L-1ABA处理时,不到2min,保卫细胞胞液的Ca2+水平由静息态的70nmol·L-1上升至第一个高峰,随后,其峰值愈来愈高,10min时达到1μmol·L-1,而气孔开度在5min后才开始变小,当气孔接近完全关闭时,Ca2+水平早已上升至最高值并已开始下降。由此可确认Ca2+是ABA诱导气孔关闭过程中的一种第二信使。
  通过测定ABA对大麦糊粉层细胞原生质胞液Ca2+浓度的影响,结果表明,胞液静息态Ca2+浓度约为200nmol·L-1。经200μmol·L-1ABA处理,可在5s内降至50nmoL-1左右。Ca2+浓度的下降值与外源ABA剂量之间存在良好的线性关系。王梅等(1991)认为这种ABA引起胞液Ca2+浓度的下降与质膜Ca2+浓度ATP酶的活化有关,这也是ABA与第二信使关系的又一实验证据。另有研究表明ABA能影响细胞质膜、液泡膜等生物膜的性质,从而影响离子的跨膜运动。如ABA使保卫细胞的K+与Cl-外渗量急剧上升,从而使其渗透物质减少,水势上升,气孔关闭。
  (三)ABA对基因表达的调控
  当植物受到渗透胁迫(osmotic stress)时,其体内的ABA水平会急剧上升,同时出现若干个特殊基因的表达产物。倘若植物体并未受到干旱、盐渍或寒冷引起的渗透胁迫,而只是吸收了相当数量的ABA,其体内也会出现这些基因的表达产物。近几年来,已从水稻、棉花、小麦、马铃薯、萝卜、番茄、烟草等植物中分离出10多种受ABA诱导而表达的基因,这些基因表达的部位包括种子、幼苗、叶、根和愈伤组织等。
  ABA可改变某些酶的活性,如ABA能抑制大麦糊粉层中α-淀粉酶的合成,这与RNA合成抑制剂——放线菌素D的抑制情况相似(图7-22)。有人认为ABA是阻碍了RNA聚合酶的活性,致使DNA到RNA的转录不能进行。
  图7-22 脱落酸及放线菌素D对大麦糊粉层α-淀粉酶合成的抑制作用
  糊粉层在0.1μmol·L-1GA溶液中保温11h,此时加入ABA(5μmol·L-1)或放线菌素D(10 μg·L-1),加入后2.5、5、10h测定α-淀粉酶合成。
文章录入:admin    责任编辑:admin 
  • 上一篇文章:

  • 下一篇文章:
  • 发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
    网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)
    生物小吧